新闻

transient electromagneticfield method

作者:易发棋牌最新网站 发布时间:2020-08-23 10:08 点击数:

  变分方程 40年代,物理学家J.S.施温格首先将变分法引入电磁波的散射和绕射问题。变分法的泛函方程又称变分方程,是使泛函的一阶变分等于零δ

  =0,即泛函式对可取函数取驻定值(稳定值)。电磁场问题中的各种物理原理(能量原理、最小作用量原理和反应原理等)往往能说明某些参量的泛函值具有驻定性,其可取函数必须取能使泛函为驻定值(包括极大或极小值的情况)的形式,从而使这些参量与电磁场未知函数归结成统一的求解内容。例如,根据静电场最小储能的汤姆逊定理,可知式(2)和(3)的泛函都应为极小值,据此可同时求解电容量和电荷函数或电位函数,根据所得1/C

  是待定本征值,变分方程(6)中两个内积之比称为瑞利商。根据电磁场问题的具体物理条件和性质,变分方程可以附有或不附有边界条件和强加约束条件。边界条件将影响近似解函数形式的选择,强加约束条件可通过拉格朗日乘子法被变分方程所吸收。另一方面,泛函取驻定值的变分方程对应有泛函积分式中被积函数F

  对其变元的某种微分方程,称为该变分方程的欧拉微分方程。凡欧拉微分方程在所给边界条件下的解必定是使所对应的泛函值驻定的可取函数。

  加权余量法作为算子方程的一类近似解法的概括,包含有伽略金法(1915)、子域法(1923)、最小二乘法(1928)、狭义的矩量法(1932)和配置法(1937)等独立发展的解法,它们都有相似的求解过程,使近似解余量在各种平均意义下的误差泛函值等于零。R.F.哈林顿(1967)将这些方法引入电磁场边值问题并称之为(广义的)矩量法。解算子方程的伽略金法与所对应的解变分方程的里兹法完全等价,而且是矩量法中收敛性最好的一种选择。

  当变分方程附有第一类齐次边界条件时,要求基函数序列都符合齐次边界条件(变分方程不必满足第二类或第三类边界条件)。若附有第一类非齐次条件,则应先将它归入方程的未知函数而维持边界条件的齐次性。

  )},即权函数序列与基函数序列相同的加权余量法称为伽略金法,显然与里兹法等价。子域法以矩形脉冲函数为权;配置法以δ

  }作为权函数序列;最小二乘法则以余量函数对待求系数的变化率作为权函数的复共轭。另一方面,基函数序列也有各种不同的选择,用得较多的是矩形脉冲函数、三角脉冲函数、分段正弦函数等分域基函数;有时也用多项式全域基函数。

  利用有限差分法的概念,将加权余量法的子域未知函数表示成离散结点上未知函数取样值的多项式插值函数,就发展成有限元法(当子域为整个场域的一部分时)或边界元法(当子域为场域边界的一部分时)。单矩法在实质上是数学边界上的边界元法与界内的有限元法(或有限差分法),以及界外的分离变量法三者的联合。


易发棋牌最新网站

@SHENZHEN ENERGY Corporation All Rights Reserved.

易发棋牌最新网站